Software Engineering

Natallia Kokash
emaill: nkokash@liacs.nl

Leiden Institute of Advanced Computer Science

N. Kokash, Software Engineering 1

Software Engineering

Agenda

A Software Architecture
A Definition
A Architecture Design
A Viewpoints and view models
A Architectural styles
A Architecture assessment

4’// A Software Design
A Principles
A Methods

UG DI
3" e W,
<4 Al
pf 0y -
H g,’imm |
o ES
|2 o

‘a?ﬁ' A N. Kokash, Software Engineering Leiden Institute of Advanced Computer Science

Programmer 0s app

A Skip RE and design
Start writing code

Design is a waste of time

We need to show something to the
customer

We are judged by the amount of
LOC/month

We know t hat t he schec

How is this different from eXtreme Programming?

A Another view:

Leiden Institute of Advanced € 0

outer Science 3

De3|gn principles

A Abstraction

A Modularity, coupling and
cohesion

A Information hiding
A Limited complexity
A Hierarchical structure

i"‘é\‘s’: N. Kokash, Software Engineering Leiden Institute of Advanced ¢ uter Science

Software Engineering

Abstraction

A Procedural abstraction:

Natural consequence of
stepwise refinement: name of
procedure denotes sequence of

actions

A Data abstraction:

Aimed at finding a hierarchy in
the data

Leiden Institute of Advanced Computer Science 5

Software Engineering

Coupling and cohesion

A Structural criteria which tell us something about
iIndividual modules and their interconnections

@~ A Cohesion: the glue that keeps a

module together

A Couling: the strength of the
connection between modules

2i?g’f N. Kokash, Software Engineering Leiden Institute of Advanced Jom yuter Science

6

Cohesion types

A Coincidental (worst): arbitrarily parts (e.g., utiility
classes)

A Logical: parts of a module logically are categorized to do
the same thing.

A . parts of a module are processed together
(e.g., after catching an exception).
A . parts of a module always follow a certain

sequence of execution (e.g. check file permission).

A Communicational: parts of a module operate on the
same data.

A Sequential: the output from one part is the input to
another part.

A Functional (best): parts of a module contribute to a single

well-defined task (e.g. tokenizing a string of XML).

i Leiden Institute of AdvancedCoﬁip‘iiter. Science 7
ineering Com I
B3

Software Engineering : B bec%e
How to determine the e
. often
cohesion type? "

ho 4, h '
A Describe the purpose of the module in one sentence

Q
e

A If the sentence Is compound, contains a comma or
more than one verb Y it probably has more than
one function: logical or communicational cohesion

A If the verb is not followed by a specific object Y
orobably logical cohesion (example: edit all data)

A If the sentence contains time-related words like
Afirsto, Wtemeoralcohesiomf t er O
|

AWords | i ke nst ar ttampooal i
cohesion

(

ing Leiden Institute of Advanced Computer Science 8
o

Coupling types

A Content: a module depend on
the internal working of another
module

A Common: two modules share
the same global data

A External: modules share an
externally imposed data format,
or communication protocol

A Data: modules share iz Control: one module controls the

data through, e.g., flow of another, by passing it
through parameters. information on what to do

A Message: Component A Stamp: modules share a
communicate via composite data structure and

message passing use only part of it

¢ N. Kokash, Software Engineering Leiden Institute of Advanc’,_ ::’ i

3
5
a’%’a ?5 > /

Strong cohesion + weak coupling

A Simple Interface

A Simpler communication

A Simpler correctness proofs
A Changes influence other modules less often
A Reusability increases

A Comprehensibility improves

P ! ! ! ! ! !
e >
4 >
£

g":‘éﬁij N. Kokash, Software Engineering Leiden Institute of Advanced Gomputer Science 10

Software Engineering

Information hiding

A Each module has a secret

A Design involves a series of decision &

For each such decision, wonder who needs to
know and who can be kept in the dark

A Information hiding is related to:

Abstraction: if you hide something, the
user may abstract from that fact

Coupling: the secret decreases
coupling between a module and its
environment

Cohesion: the secret is what binds the
parts of the module together

]
Leiden Institute of Advanced Gomputer Science 11
o

Complexity

swee A Measure certain aspects of the
== software (lines of code, # of If-
@ statements, dept
= =~ A Use these numbers as a criterion
= to assess a design, or to guide
the design
AR A Higher value Y higher
@24 complexity Y more effort
required (= worse design)

Intra-modular: inside one module
Inter-modular: between modules

ineering Leiden Institute of Advanced Co é’%i‘egScience 12

Software Engineering

Size-based complexity measures

A Counting lines of code
Differences in verbosity
Differences between programming languages
a:=b versuswhile p*<> nildo p:=p"

AHal st eados nsoftware s
counting operators and operands:

-'-'_-,'1' =
n,: number of unique operators - 'mm ""m,,,,,,,....uqmmmf
n,: number of unique operands z z
N,: total number of operators "\Q“Q ﬂers

r
N,: total number of operands L M,M

ing Leiden Institute of Advanced Computer Science 13
i

Example

| =0:; |
int =i+

]
Leiden Institute of Advanced Computer Science 14

Other computer science formulas

A Size of vocabulary: n =n; +n,
A Program length: N = N; + N,

A Volume: V = N log,n

A Level of abstraction: L = V*/ V

A Approximation: LO =n,)((,2N})
A Programming effort: E = V/L

A Estimated programming time: T 0 EAS8
A Estimate of N: N 0 ngog,n, : n,log,n,

For this example: N =68, N0 = L$8.015, L0 =

7 =
‘‘‘‘‘‘‘

More complex metrics

A Intra-modular:

Structure-based (e. g. ,
complexity:
A number of edges - number of nodes + number of
connected components + 1)

A Inter-modular:
Based on nAuseso relati on

Tree impurity (for a graph with n nodes and e
edges: m(G) = 2(e-n+1)/(n-1)(n-2)
Information flow metric (e.g., S h e p p evaridnd)s

s IRV Kokash, Software Engineering Leiden Institute of Advanced Gomputer Science 16

s
Object-oriented metrics
A WMC: Weighted Methods per Class
A DIT: Depth of Inheritance Tree
A NOC: Number Of Children
A CBO: Coupling Between Object Classes

A RFC: Response For a Class
A LCOM: Lack of COhesion of a Method

More in the lectures on software quality (lecture 5) and
cost estimation (lecture 11)

Design methods f AN
A Functional decomposition e AN,
A Data flow design (SA/SD) 72

A Design based on data structures (JSD/JSP)
A Object-oriented design

Problem Data Set

ff I| II Y
/ |I II \'.
task 0 task 1 task 2 task 3
okash, Software Engineering

Software Engineering

Functional decomposition

A Extremes: bottom-up and top-down

A Not used as such; design is not purely
rational:

Aclients do not know what they

Achanges influence earlier
- . . - decisions
Apeople make errors

Aprojects do not start from scratch

A Rather, design has a yo-yo character
A We can only fake a rational design process

el N
ing Leiden Institute of Advancedd.vaﬁl’)ﬁ?e;,,Science 19

Software Engineering

Data flow design

Yourdon and Constantine (early 70s)

Nowadays version: two-step
process:

Structured Analysis (SA), resulting in a
logical design, drawn as a set of data
flow diagrams

. Structured Design (SD) transforming
s the logical design into a program

/f) MM YoRuR®
A e structure drawn as a set of structure

(B ACK To SLEEP) charts
A Do you remember Data Flow

Diagrams (DFDs)?

> >

=

Leiden Institute of Advanced Co é’%i‘egScience 20

ineering

Data flow design

A Top-level DFD: context view
A First-level decomposition
A Second-level decomposition

V4

library 9
system

direction

[
|

request

»
>

ackoment

management

report

2:-‘?@’; N. Kokash, Software Engineering Leiden Institute of Advanced | uter Science

Software Engineering

First-level decomposition

management

request

report | direction

" Prelim log data " Prelim
doc

doc

return
horrow

re log data

Borrow Prelim log file
title doc

\ titIeL/

catalog adm.

acknowledgement

title

N. Kokash, Software Engineering Leiden Institute of Advance ﬂ’(ft).'.r__!g'

Science 22

Software Engineering

Second-level decomposition
Il

-

$ & -

-_— d data base log file
+ requeSN ".?%Iientinfo /og data

Check OK Process

client request
data

borrow

not OK request request

E% N. Kokash, Software Engineering Leiden Institute of Advanced Gomp AZE’% cience 23

Example minispec

|dentification: Process request
Description:
1 Enter type of request

1.1 If invalid, issue warning and repeat
step 1

1.2 If step 1 repeated 5 times, terminate
transaction

2 Enter book identification

2.1 If invalid, issue warning and repeat
step 2

2.2 If step 2 repeated 5 times, terminate
transaction

3 Log client identification, request type
and book identification

e WES

o
“ iy TR 3
Leiden Institute of Advanced Gomputer Science 24

; N. Kokash, Software Engineering

Data dictionary entries

borrow -request =client -id+ book -id

return -request =client -id+ book -id

log -data =client -id + [borrow | return] +
book - id

book-id =author -name + title + (Isbn) +

[proc | series | other]

Conventions:
[] - include one of the enclosed options

| - separates options
+ - AND
() - enclosed items are optional

N. Kokash, Software Engineering Leiden Institute of Advancedi‘gbﬁipiite; Science 25

P From data flow dlagrams tO

. Structure charts | =
| =iy

A Result of SA: logical model, consisting f a set of
DFDOSsS, audg mlelspdacealhd datg
dictionary

A Structured Design= transiti on
structure charts

Heuristics for this transition are based on notions of
coupling and cohesion

Major heuristic concerns choice for top-level
structure chart, most often: transform-centered

; w : . Py
. ‘A‘\‘

ineering Leiden Institute of Advanced Gomputer Science 26
\"\ﬁ" .

Software Engineering

Transform-centered
design

v

Do job

N. Kokash, Software Engineering Leiden Institute of Advanced Gomputer Science 27

Design based on data structures

A Jackson Structured
Programming (JSP)

for programming-in-the-small

A Jackson Structured Design
(JSD)

for programming-in-the-large

A Michael Anthony Jackson
(born 1936) Is a British
computer scientist

i_‘ég’+ N. Kokash, Software Engineering Leiden Institute of Advanced Gomputer.Science 28

Software Engineering

JSP A Basic idea: good program reflects
structure of its input and output

A Program can be derived almost
mechanically from a description of
the Iinput and output

A Input and output are depicted in a
structure diagram and/or in
structured text/schematic logic
(pseudocode)

sequence iteration selection

A 8

i"?g’: N. Kokash, Software Engineering Leiden Institute of Advanced (yuter Science

Software Engineering

JSP Example

B R

-

Command EEquencer e

- -

- —

Command part ™ r__ ———

e e

Command name

Farameter part

Farameter "

ﬂ/ o =,
Farameter A |F'arameter EH |F'ararneter C

h‘| He!:--:-rt
|

Corm ma-n-:l repo it™

.-"'-’ﬂ-“"\-.\
Headear | Body
Hepndﬁne.

Command sequence — Report

e .
Command part —e Command rep-:-rr
— | T
Command name —eHeader Farameter part Body
I I
Parameter ™ Hep-:urtline.
Parameter 4-' || Parameter B2 [P arameter c&

Leiden Institute of Advanced G

-}Lgégﬁcience 30

JSP Example

Input the Command sequendc: and outputthe Repord |

——— T

Chrerall Inout Frocess the Command and ™ Chrerall

pre-process P output the Command report post-process
Frocess the

Command Frocess the Cutputthe Command
re-process Command name and Farameter part Repaortbod ost-process
pre-p “%/ ; Xp \"&
Farameter part Inout Frocess thd® Farameter part| | Report body P;?Jﬁﬁf:he Report body
pre-process P Farameter post-process pre-process Report body post-process

Farametar / \\ Farameter

pre-process i post-process

Input
F'ru:n:e55 Frocess
Parameter B | | Parameter C

F'ru:n:e55
Farametar &

N. Kokash, Software Engineering Leiden Institute of Advanced Computer Science 31

Software Engineering

The same without JSP

Input the Command sequence and outputthe Report

|
Chwerall . AR Fost-pocess Chwerall
inthe Command sequence
pre-process 1nd pocess it of Command post-process
In caseof In case of O | In case of In case'df O &
Inut - . . . In zase of
input of a input of input of input of In zase of cecond of latar
Command name, Farameter &, - arameter B Farametzr C, the first Command
process it process it process it process it Command
In case O In czase of (0 Command Frocess Farametar Farametear Output Command
of second ar e the Command part part Feport ot
the first later IECEEE name and pre- post I:uE-:I rF-I:n:esg
command 0 MM and P output He ade process process ¥ P
first = Faramesr part Cutput Command Process o Report
falze post-process Reportbody | [post-process SO Lk Y
pre-process output 3 post-
\ Reportline process
|
Feport body Przziﬁutaand Feport body
pre-process i post-process

N. Kokash, Software Engineering

Leiden Institute of Advanced Computer Science 32

Fundamental issues in JSP

A Model input and output using structure
diagrams

A Merge diagrams to create program
structure

A Meanwhile, resolve structure clashes

Clash = there is no obvious
correspondence between the input and
output structures

A Optimize results through program
Inversion
Design simple programs using JSP and

then invert one (or more) programs to
optimize the design.

Leiden Institute of Advanced;Gbﬁ';l'_pudte; Science 33

Software Engineering

Program inversion

A - ' X X produced from A

¥ ¥
No correspondence
®—> P ‘>® B - / g Y between Y and B

(A and X are serial data streams)

* -y
C < N 7 Z produced from C
A +—p | 4_+ X
B - c Y
c - Z

N. Kokash, Software Engineering Leiden Institute of Advanc’ *:7 er Science 34

Differences between JSP and

other methods

A Functional decomposition, data
flow design:

A Problem structure Y functional

Vd

Ao structure Y program structure
® A JSP:
A Problem structure Y data

Vd

structure Y program structure

2i?g’f N. Kokash, Software Engineering Leiden Institute of Advanced Gom yuter Science 35

Jackson Structured Design (JSD)

A Problem with JSP: how to obtain a
mapping from the problem structure to
the data structure?

A JSD tries to fill this gap

A JSD has three stages:

modeling stage: description of real world
problem in terms of entities and actions

network stage: model system as a network of
communicating processes

Implementation stage: transform network into
a sequential design

ing Leiden Institute of Advanced Computer Science 36
o

JSD modeling stage

v A JSD models the UoD as a set of
S entities
X A For each entity, a process Is
“wwow - Created which models the life cycle
of that entity
o e == A This life cycle is depicted as a
~3J\/\ «w Pprocess structure diagram (PSD)

wawe A P S DO s finHerstate diagrams:

(ORACLE)S
the roles of nodes and edges has
been reversed

the nodes denote transitions while the
edges denote states

Department Accoynt Iy Invoiced

i:‘,ﬁié N. Kokash, Software Engineering Leiden Institute of Advanced Gomputer Science 37

Software Engineering

Object-oriented design principles

A Three major steps:

dentify the objects

Determine their attributes and services
Determine the relationships between objects

A OO as middle-out design
First set of objects becomes middle level

To implement these, lower-level objects are
required

A control/workflow set of objects constitutes the
top level

Leiden Institute of Advanced Computer Science 38
o

Carefully consider candidate list

A Eliminate implementation constructs,
such as nsoftwareo

A Replace or eliminate vague terms:
myste&maccomputer o

A Equate synonymous terms:

fcust omer 0 &nidc |fiicel niteor

A Eliminate operation names, if possible
(such as nNtransact.
A Be careful in what you really mean

Can a client be a library employee? Is it
Abook copyo rather t

A Eliminate individual objects (as
opposed to classes)

Mookods Ycaotdterdi but e of

J = S
,@ N.Kokash, Software Engineering Leiden Institute of Advanced Computer Science 39

Software Engineering

Identlfy relationships

ubpﬂr’ A From the problem statement:

| employee operates station
station has bar code reader
bar code reader reads book copy

bar code reader reads identification
card

A Tacit knowledge:
library owns computer
library owns stations
computer communicates with station
library employs employee
client is member of library
client has identification card

.

= W
ol
. iy TR .
ineering Leiden Institute of Advanced;Go%puﬁteg.Scwnw 40

Result: Initial class diagram

4 member-of |
| library | client
W%
k
employs
s v
| computer | v
Communicates
weith
k
station employee
4 operates
has-a
¥
bar code reades
readls reads
k) ¥
book copy identification card
4 has

N. Kokash, Software Engineering

Leiden Institute of Advanced Go

VgiE;;gScience 41

Object-oriented design methods

A Booch: early, new and rich
set of notations

A Fusion: more emphasis on
Drocess

A RUP: full life cycle model
associated with UML

i_‘ég’+ N. Kokash, Software Engineering Leiden Institute of Advanced Gomputer Science

42

Software Engineering

Boocho

met hod

|dentify classes and objects

ldentify semantics of classes and objects

|dentify relationships between classes and objects

Identify interface and implementation
of classes and objects

4 N. Kokash, Software Engineering

ok

PRYRULEN

Leiden Institute of Advanced Gomputer Science 43

Fusion

Analysis

object model

interface model

Design

object interaction
graphs

visibility graphs

class descriptions inheritance graphs

K . . 15 "'»J,‘.' 54 g
A N. Kokash, Software Engineering Leiden Institute of Advanced Gom;

Software Engineering

A Four phases: inception, elaboration,
construction, transition

A Analysis and design workflow:
First iteration: architecture

Next, analyze behavior:
A from use cases to set of design elements
A produces black-box model of the solution

Finally, design components:
A refine elements into classes, interfaces, etc.

i b - !
%:‘ggi«»’; N. Kokash, Software Engineering Leiden Institute of Advanced Computer Science 45

Software Engineering

m Classification of
design methods
A Orientation dimension:

Problem-oriented: understand problem and its
solution

Product-oriented: correct transformation from
specification to implementation

A Product/model dimension:
Conceptual: descriptive models
Formal: prescriptive models

H s B o Lot .
ol . Kokash, Software Engineering Leiden Institute of Advanced Computer Science 46

Software Engineering

. Classification of
e B M design methods

M K G

problem-oriented product-oriented

Understand the p ntation

|
. [l
conceptual psicellle Structured design
Structured analysis

\Y;
formal Functional decomposition

JSP

Represent prop 1 units

UG DI
P N
4| Al
pf oe
H g,’imm |
H B g
i

‘%% N. Kokash, Software Engineering Leiden Institute of Advan c_tt",c).r_u.le,‘gg? ce

Software Engineering

Caveats when choosing a
particular design method

A Familiarity with the problem
domain

N, ADesi gner 0s expe
A Avallable tools
A Development philosophy

Design pattern

A Provides solution to a recurring
problem

Balances set of opposing forces

Documents well-prove design
experience

Abstraction above the level of a single
component

Provides common vocabulary and
understanding

Are a means of documentation

Supports construction of software
with defined properties

™ I

>

>

> >

F 5k T 5
Ul N Kokash, Software Engineering Leiden Institute of Advanced Computer Science 49

Example design pattern: Proxy

MySQL Server

(i A Context:

Client needs services from other
component, direct access may
not be the best approach

A Problem:

We do not want hard-code
access

A Solution:

Communication via a
representative, the Proxy

MySQL Proxy —

3 : : _'.‘."_"i." i
A N. Kokash, Software Engineering Leiden Institute of Advanced Computer Science 50

Example design pattern:
Command Processor

A Context:

User interface that must be flexible or provides
functionality beyond handling of user functions

A Problem:

Well-structured solution for mapping interface to internal
functionality. AlIl oOextras:

A Solution:

A separate component, the Command Processor, takes
care of all commands

Actual execution of the command is delegated

A N. Kokash, Software Engineering Leiden Institute of Advanced Gomputer Science 51

Anti-patterns

A Patterns describe desirable
behavior

£ A Anti-patterns describe situations
| one had better avoid

A In agile approaches (XP),
refactoring Is applied whenever
an anti-pattern has been
Introduced

Leiden Institute of Advanced;Gbﬁ';l'_pudte; Science 52

Software Engineering

Example antipatterns

A God class: class that holds most
responsiblilities

A Lava flow: dead code

A Poltergeist: class with few
responsiblilities and a short life

A Golden Hammer: solution that
does not fit the problem

A Stovepipe: (almost) identical
solutions at different places

A Swiss Army Knife: excessively
complex class interface

= W
.
. . P . Lo o] .
Leiden Institute of Advanced Gomputer Science 53

A Essence of the design process: decompose
system into parts
A Desirable properties of a decomposition:

coupling/cohesion, information hiding, (layers of)
abstraction

A There have been many attempts to express
these properties in numbers
A Design methods:

functional decomposition, data flow design, data
structure design, object-oriented design

o " |
A N. Kokash, Software Engineering Leiden Institute of Advanced Gomputer Science 54

Homework

A Read chapter 12

A Design the Image2UML system

Use a UML design tool and deliver your design
sufficiently documented in a PDF file. The
document to be delivered should at least consist of
a class diagram, a sequence diagram, an
activity diagram and a state chart diagram.

Leiden Institute of Advanced Gomputer Science 55

