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Software Engineering 

Agenda 
ÂSoftware Architecture 

ÃDefinition 

ÃArchitecture Design 

ÃViewpoints and view models 

ÃArchitectural styles 

ÃArchitecture assessment  

ÂSoftware Design 

ÃPrinciples 

ÃMethods 

2 N. Kokash, Software Engineering 



Software Engineering 

Programmerôs approach to SD 

How is this different from eXtreme Programming? 
 

Â Another view:  

The longer you postpone coding, the sooner you will finish! 
 

Â Skip RE and design 

Â Start writing code 
 

Â Design is a waste of time  
Â We need to show something to the 

customer  
Â We are judged by the amount of 

LOC/month  
Â We know that the schedule is too tighté 
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Design principles 

ÂAbstraction 

ÂModularity, coupling and 

cohesion 

Â Information hiding 

ÂLimited complexity 

ÂHierarchical structure 
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Software Engineering 

Abstraction 

ÂProcedural abstraction:  

ÃNatural consequence of 

stepwise refinement: name of 

procedure denotes sequence of 

actions 

ÂData abstraction:  

ÃAimed at finding a hierarchy in 

the data 
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Software Engineering 

Coupling and cohesion  

ÂStructural criteria which tell us something about 

individual modules and their interconnections 

ÂCoupling: the strength of the 

connection between modules 

 

ÂCohesion: the glue that keeps a 

module together 
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Cohesion types 
Â Coincidental (worst): arbitrarily parts (e.g., utiility 

classes) 

Â Logical: parts of a module logically are categorized to do 
the same thing.  

Â Temporal: parts of a module are processed  together 
(e.g., after catching an exception). 

Â Procedural: parts of a module always follow a certain 
sequence of execution (e.g. check file permission).  

Â Communicational: parts of a module operate on the 
same data. 

Â Sequential: the output from one part is the input to 
another part.  

Â Functional (best): parts of a module contribute to a single 
well-defined task  (e.g. tokenizing a string of XML). 
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How to determine the 

cohesion type? 

Â Describe the purpose of the module in one sentence 
 

Â If the sentence is compound, contains a comma or 
more than one verb Ý it probably has more than 
one function: logical or communicational cohesion 

Â If the verb is not followed by a specific object Ý 
probably logical cohesion (example: edit all data) 

Â If the sentence contains time-related words like 
ñfirstò, ñthenò, ñafterò Ý temporal cohesion 

ÂWords like ñstartupò, ñinitializeò imply temporal 
cohesion 

 

8 N. Kokash, Software Engineering 



Software Engineering 

Coupling types 

Â Content: a module depends on 
the internal working of another 
module 

Â Common: two modules share 
the same global data 

Â External: modules share an 
externally imposed data format, 
or communication protocol 

Â Control: one module controls the 
flow of another, by passing it 
information on what to do 

Â Stamp: modules share a 
composite data structure and 
use only part of it 

Â Data: modules share 
data through, e.g., 
through parameters.  

Â Message: Component 
communicate via 
message passing 
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Strong cohesion + weak coupling 

ÂSimple interface 

ÂSimpler communication 

ÂSimpler correctness proofs 

ÂChanges influence other modules less often 

ÂReusability increases 

ÂComprehensibility improves 
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Information hiding 
ÂEach module has a secret 

ÂDesign involves a series of decision 

ÃFor each such decision, wonder who needs to 
know and who can be kept in the dark 

Â Information hiding is related to: 
ÃAbstraction: if you hide something, the 

user may abstract from that fact 

ÃCoupling: the secret decreases 
coupling between a module and its 
environment 

ÃCohesion: the secret is what binds the 
parts of the module together 
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Complexity 
ÂMeasure certain aspects of the 

software (lines of code, # of if-
statements, depth of nesting, é) 

ÂUse these numbers as a criterion 
to assess a design, or to guide 
the design 

ÂHigher value Ý higher 
complexity Ý more effort 
required (= worse design) 

ÂTwo kinds: 
Ãintra-modular: inside one module 

Ãinter-modular: between modules 
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Size-based complexity measures 
ÂCounting lines of code 

ÃDifferences in verbosity 

ÃDifferences  between programming languages 

Ãa:= b  versus while  p^ <> nil do  p:= p^  

ÂHalsteadôs ñsoftware scienceò, essentially 
counting operators and operands: 

Ãn1: number of unique operators 

Ãn2: number of unique operands 

ÃN1: total number of operators 

ÃN2: total number of operands 
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public static void sort( int  x []) {  

 for ( int  i =0; i  < x.length - 1; i ++) {  

  for ( int  j=i+1; j < x.length ; 
j++) {  

   if (x[ i ] > x[j]) {  

    int  save=x[ i ];  

    x[ i ]=x[j]; x[j]=save  

   }  

  }  

 }  

}  

 

Example 

operator, 1 occurrence 

operator, 2 occurrences 

operand, 2 occurrences 

operand, 2 occurrences 
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Other computer science formulas 

Â Size of vocabulary: n = n1 + n2 

Â Program length: N = N1 + N2 

Â Volume: V = N log2n 

Â Level of abstraction: L = V*/ V 

Â Approximation: Lô = (2/n1)(n2/N2) 

Â Programming effort: E = V/L 

Â Estimated programming time: T ô = E/18 

Â Estimate of N: N ô = n1log2n2 : n2log2n2 

 

For this example: N = 68, N ô = 89, L = .015, Lô = .028 
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More complex metrics 

Â Intra-modular:  

ÃStructure-based (e.g., McCabeôs cyclomatic 

complexity:  

Â number of edges - number of nodes + number of 

connected components + 1) 

Â Inter-modular: 

ÃBased on ñusesò relation (call graph) 

ÃTree impurity (for a graph with n nodes and e 

edges: m(G) = 2(e-n+1)/(n-1)(n-2) 

ÃInformation flow metric (e.g., Shepperdôs variant ) 
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Object-oriented metrics 

ÂWMC: Weighted Methods per Class 

ÂDIT: Depth of Inheritance Tree 

ÂNOC: Number Of Children 

ÂCBO: Coupling Between Object Classes 

ÂRFC: Response For a Class 

ÂLCOM: Lack of COhesion of a Method 
 

More in the lectures on software quality (lecture 5) and 

cost estimation (lecture 11) 
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Design methods 

ÂFunctional decomposition 

ÂData flow design (SA/SD) 

ÂDesign based on data structures (JSD/JSP) 

ÂObject-oriented design 
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Functional decomposition 
ÂExtremes: bottom-up and top-down 

ÂNot used as such; design is not purely 
rational: 

Áclients do not know what they 
want 

Áchanges influence earlier 
decisions 

Ápeople make errors 

Áprojects do not start from scratch 

ÂRather, design has a yo-yo character 

ÂWe can only fake a rational design process 
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Data flow design 

Â Yourdon and Constantine (early 70s) 

Â Nowadays version: two-step 
process: 

ÃStructured Analysis (SA), resulting in a 
logical design, drawn as a set of data 
flow diagrams 

ÃStructured Design (SD) transforming 
the logical design into a program 
structure drawn as a set of structure 
charts 

Â Do you remember Data Flow 
Diagrams (DFDs)? 
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Data flow design 

ÂTop-level DFD: context view 

ÂFirst-level decomposition 

ÂSecond-level decomposition 

Âé 

 

management client library  

system 

direction 

report 

request 

ackôment 
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First-level decomposition 

Borrow  

title 

Prelim  

doc 

Prelim  

doc 

Prelim  

doc 

client 

catalog adm. 

management 

log file 

request 

log data 

return 

        request 
borrow 

request 

title title 

a
c
k
n
o
w

le
d
g
e
m

e
n
t 

report direction 

log data 
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Second-level  decomposition 

Check  

client  

data 

log file 

log data 

Process  

request 

data base 

return 

request 

borrow 

not OK 

OK 

request 

request 

client info 
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Example minispec 
Identification:  Process request  

Description:  

1 Enter type of request  

 1.1 If invalid, issue warning and repeat 
step 1  

 1.2 If step 1 repeated 5 times, terminate 
transaction  

2 Enter book identification  

 2.1 If invalid, issue warning and repeat 
step 2  

 2.2 If step 2 repeated 5 times, terminate 
transaction  

3 Log client identification, request type 
and book identification  

4 ...  
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Data dictionary entries 
borrow - request = client - id + book - id  

return - request = client - id + book - id  

log - data = client - id + [borrow | return] + 
book - id  

book - id = author - name + title + ( isbn ) +          
[proc | series | other]  

 

Conventions: 

 [ ]  - include one of the enclosed options 

 |    - separates options 

 +   - AND 

 ()   - enclosed items are optional 
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From data flow diagrams to 

structure charts 

ÂResult of SA: logical model, consisting f a set of 
DFDôs, augmented by minispecs and data 
dictionary 

ÂStructured Design = transition from DFDôs to 
structure charts 
ÃHeuristics for this transition are based on notions of 

coupling and cohesion 

ÃMajor heuristic concerns choice for top-level 
structure chart, most often: transform-centered 
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Transform-centered 

design 

A B D E F G 

C H K 

Do job 

A 

C 

B G 

F E D 

K 

H 
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Design based on data structures 

ÂJackson Structured 
Programming (JSP) 
Ãfor programming-in-the-small 

 

ÂJackson Structured Design 
(JSD) 
Ãfor programming-in-the-large 

 

ÂMichael Anthony Jackson 
(born 1936) is a British 
computer scientist  
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JSP ÂBasic idea: good program reflects 
structure of its input and output 

ÂProgram can be derived almost 
mechanically from a description of 
the input and output 

Â Input and output are depicted in a 
structure diagram and/or in 
structured text/schematic logic 
(pseudocode) 

 

A 

B C D 

sequence 

B * 

iteration 

B o C o D o 

A 

selection 

A 
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JSP Example 
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JSP Example 
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The same without JSP 
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Fundamental issues in JSP 
ÂModel input and output using structure 

diagrams 

ÂMerge diagrams to create program 
structure 

ÂMeanwhile, resolve structure clashes 
ÃClash = there is no obvious 

correspondence between the input and 
output structures 

Â Optimize results through program 
inversion 
ÃDesign simple programs using JSP and 

then invert one (or more) programs to 
optimize the design. 

 
33 N. Kokash, Software Engineering 



Software Engineering 

Program inversion 
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Differences between JSP and 

other methods 

ÂFunctional decomposition, data 

flow design: 

ÃProblem structure  Ý functional 

structure  Ý program structure 

ÂJSP:  

ÃProblem structure  Ý data 

structure  Ý program structure 
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Jackson Structured Design (JSD) 
ÂProblem with JSP: how to obtain a 

mapping from the problem structure to 
the data structure? 

ÂJSD tries to fill this gap 

ÂJSD has three stages: 

Ãmodeling stage: description of real world 
problem in terms of entities and actions 

Ãnetwork stage: model system as a network of 
communicating processes 

Ãimplementation stage: transform network into 
a sequential design 
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JSD modeling stage 
ÂJSD models the UoD as a set of 

entities 

ÂFor each entity, a process is 
created which models the life cycle 
of that entity 

ÂThis life cycle is depicted as a 
process structure diagram (PSD) 

ÂPSDôs are finite state diagrams:  
Ãthe roles of nodes and edges has 

been reversed 

Ãthe nodes denote transitions while the 
edges denote states 
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Object-oriented design principles 
ÂThree major steps: 

ÃIdentify the objects 

ÃDetermine their attributes and services 

ÃDetermine the relationships between objects 

ÂOO as middle-out design 

ÃFirst set of objects becomes middle level 

ÃTo implement these, lower-level objects are 
required 

ÃA control/workflow set of objects constitutes the 
top level 
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Carefully consider candidate list 
Â Eliminate implementation constructs, 
such as ñsoftwareò 

Â Replace or eliminate vague terms: 
Ãñsystemò  Ý ñcomputerò 

Â Equate synonymous terms:  
Ãñcustomerò and ñclientò  Ý ñclientò 

Â Eliminate operation names, if possible 
(such as ñtransactionò) 

Â Be careful in what you really mean  
Ã Can a client be a library employee? Is it 
ñbook copyò rather than ñbookò? 

Â Eliminate individual objects (as 
opposed to classes)  
Ãñbookôs codeò  Ý attribute of ñbook copyò 
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Identify relationships 
Â From the problem statement: 
Ãemployee operates station 

Ãstation has bar code reader 

Ãbar code reader reads book copy 

Ãbar code reader reads identification 
card 

Â Tacit knowledge: 
Ã library owns computer 

Ã library owns stations 

Ãcomputer communicates with station 

Ã library employs employee 

Ãclient is member of library 

Ãclient has identification card 
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Result: Initial class diagram 
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Object-oriented design methods 

ÂBooch: early, new and rich 

set of notations 

ÂFusion: more emphasis on 

process 

ÂRUP: full life cycle model 

associated with UML 
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Boochô method 

Identify classes and objects 

Identify semantics of classes and objects 

Identify relationships between classes and objects 

Identify interface and implementation 

of classes and objects 
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Fusion 

object model 

interface model 

visibility graphs 
object interaction 

graphs 

Design 

Analysis 

class descriptions inheritance graphs 
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RUP 

ÂFour phases: inception, elaboration, 

construction, transition 

ÂAnalysis and design workflow: 

ÃFirst iteration: architecture 

ÃNext, analyze behavior:  

Â from use cases to set of design elements  

Âproduces black-box model of the solution 

ÃFinally, design components:  

Â refine elements into classes, interfaces, etc. 
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Classification of  

design methods 

ÂOrientation dimension:  

ÃProblem-oriented: understand problem and its 
solution 

ÃProduct-oriented: correct transformation from 
specification to implementation 

ÂProduct/model dimension: 

ÃConceptual: descriptive models 

ÃFormal: prescriptive models 
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Classification of 

design methods 

II 

Structured design 

III 

JSD 

VDM 

IV 

Functional decomposition 

JSP 

I 

ER modeling 

Structured analysis 

Understand the problem Transform to implementation 

Represent properties  Create implementation units 
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Caveats when choosing a 

particular design method 

ÂFamiliarity with the problem 

domain 

ÂDesignerôs experience 

ÂAvailable tools 

ÂDevelopment philosophy 
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Design pattern 
Â Provides solution to a recurring 

problem 

Â Balances set of opposing forces 

Â Documents well-prove design 
experience 

Â Abstraction above the level of a single 
component 

Â Provides common vocabulary and 
understanding 

Â Are a means of documentation 

Â Supports construction of software 
with defined properties 

49 N. Kokash, Software Engineering 



Software Engineering 

Example design pattern: Proxy 

ÂContext: 

ÃClient needs services from other 
component, direct access may 
not be the best approach 

ÂProblem: 

ÃWe do not want hard-code 
access 

ÂSolution: 

ÃCommunication via a 
representative, the Proxy 
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Example design pattern: 

Command Processor 

Â Context: 

ÃUser interface that must be flexible or provides 
functionality beyond handling of user functions 

Â Problem: 

ÃWell-structured solution for mapping interface to internal 
functionality. All óextrasô are separate from the interface 

Â Solution: 

ÃA separate component, the Command Processor, takes 
care of all commands  

ÃActual execution of the command is delegated 
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Anti-patterns 

ÂPatterns describe desirable 

behavior 

ÂAnti-patterns describe situations 

one had better avoid 

Â In agile approaches (XP), 

refactoring is applied whenever 

an anti-pattern has been 

introduced 
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Example antipatterns 
ÂGod class: class that holds most 

responsibilities 

ÂLava flow: dead code 

ÂPoltergeist: class with few 
responsibilities and a short life 

ÂGolden Hammer: solution that 
does not fit the problem 

ÂStovepipe: (almost) identical 
solutions at different places 

ÂSwiss Army Knife: excessively 
complex class interface 
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SUMMARY 

ÂEssence of the design process: decompose 
system into parts 

ÂDesirable properties of a decomposition:  

Ãcoupling/cohesion, information hiding, (layers of) 
abstraction 

ÂThere have been many attempts to express 
these properties in numbers 

ÂDesign methods:  

Ãfunctional decomposition, data flow design, data 
structure design, object-oriented design 
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ÂRead chapter 12 

ÂDesign the Image2UML system 

ÃUse a UML design tool and deliver your design 
sufficiently documented in a PDF file. The 
document to be delivered should at least consist of 
a class diagram, a sequence diagram, an 
activity diagram and a state chart diagram. 

 

Homework 
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