
Software Engineering

Natallia Kokash

email: nkokash@liacs.nl

1 N. Kokash, Software Engineering

Software Engineering

Agenda
ÂSoftware Architecture

ÃDefinition

ÃArchitecture Design

ÃViewpoints and view models

ÃArchitectural styles

ÃArchitecture assessment

ÂSoftware Design

ÃPrinciples

ÃMethods

2 N. Kokash, Software Engineering

Software Engineering

Programmerôs approach to SD

How is this different from eXtreme Programming?

Â Another view:

The longer you postpone coding, the sooner you will finish!

Â Skip RE and design

Â Start writing code

Â Design is a waste of time
Â We need to show something to the

customer
Â We are judged by the amount of

LOC/month
Â We know that the schedule is too tighté

3 N. Kokash, Software Engineering

Software Engineering

Design principles

ÂAbstraction

ÂModularity, coupling and

cohesion

Â Information hiding

ÂLimited complexity

ÂHierarchical structure

4 N. Kokash, Software Engineering

Software Engineering

Abstraction

ÂProcedural abstraction:

ÃNatural consequence of

stepwise refinement: name of

procedure denotes sequence of

actions

ÂData abstraction:

ÃAimed at finding a hierarchy in

the data

5 N. Kokash, Software Engineering

Software Engineering

Coupling and cohesion

ÂStructural criteria which tell us something about

individual modules and their interconnections

ÂCoupling: the strength of the

connection between modules

ÂCohesion: the glue that keeps a

module together

6 N. Kokash, Software Engineering

Software Engineering

Cohesion types
Â Coincidental (worst): arbitrarily parts (e.g., utiility

classes)

Â Logical: parts of a module logically are categorized to do
the same thing.

Â Temporal: parts of a module are processed together
(e.g., after catching an exception).

Â Procedural: parts of a module always follow a certain
sequence of execution (e.g. check file permission).

Â Communicational: parts of a module operate on the
same data.

Â Sequential: the output from one part is the input to
another part.

Â Functional (best): parts of a module contribute to a single
well-defined task (e.g. tokenizing a string of XML).

7 N. Kokash, Software Engineering

Software Engineering

How to determine the

cohesion type?

Â Describe the purpose of the module in one sentence

Â If the sentence is compound, contains a comma or
more than one verb Ý it probably has more than
one function: logical or communicational cohesion

Â If the verb is not followed by a specific object Ý
probably logical cohesion (example: edit all data)

Â If the sentence contains time-related words like
ñfirstò, ñthenò, ñafterò Ý temporal cohesion

ÂWords like ñstartupò, ñinitializeò imply temporal
cohesion

8 N. Kokash, Software Engineering

Software Engineering

Coupling types

Â Content: a module depends on
the internal working of another
module

Â Common: two modules share
the same global data

Â External: modules share an
externally imposed data format,
or communication protocol

Â Control: one module controls the
flow of another, by passing it
information on what to do

Â Stamp: modules share a
composite data structure and
use only part of it

Â Data: modules share
data through, e.g.,
through parameters.

Â Message: Component
communicate via
message passing

9 N. Kokash, Software Engineering

Software Engineering

Strong cohesion + weak coupling

ÂSimple interface

ÂSimpler communication

ÂSimpler correctness proofs

ÂChanges influence other modules less often

ÂReusability increases

ÂComprehensibility improves

10 N. Kokash, Software Engineering

Software Engineering

Information hiding
ÂEach module has a secret

ÂDesign involves a series of decision

ÃFor each such decision, wonder who needs to
know and who can be kept in the dark

Â Information hiding is related to:
ÃAbstraction: if you hide something, the

user may abstract from that fact

ÃCoupling: the secret decreases
coupling between a module and its
environment

ÃCohesion: the secret is what binds the
parts of the module together

11 N. Kokash, Software Engineering

Software Engineering

Complexity
ÂMeasure certain aspects of the

software (lines of code, # of if-
statements, depth of nesting, é)

ÂUse these numbers as a criterion
to assess a design, or to guide
the design

ÂHigher value Ý higher
complexity Ý more effort
required (= worse design)

ÂTwo kinds:
Ãintra-modular: inside one module

Ãinter-modular: between modules

12 N. Kokash, Software Engineering

Software Engineering

Size-based complexity measures
ÂCounting lines of code

ÃDifferences in verbosity

ÃDifferences between programming languages

Ãa:= b versus while p^ <> nil do p:= p^

ÂHalsteadôs ñsoftware scienceò, essentially
counting operators and operands:

Ãn1: number of unique operators

Ãn2: number of unique operands

ÃN1: total number of operators

ÃN2: total number of operands

13 N. Kokash, Software Engineering

Software Engineering

public static void sort(int x []) {

 for (int i =0; i < x.length - 1; i ++) {

 for (int j=i+1; j < x.length ;
j++) {

 if (x[i] > x[j]) {

 int save=x[i];

 x[i]=x[j]; x[j]=save

 }

 }

 }

}

Example

operator, 1 occurrence

operator, 2 occurrences

operand, 2 occurrences

operand, 2 occurrences

14 N. Kokash, Software Engineering

Software Engineering

Other computer science formulas

Â Size of vocabulary: n = n1 + n2

Â Program length: N = N1 + N2

Â Volume: V = N log2n

Â Level of abstraction: L = V*/ V

Â Approximation: Lô = (2/n1)(n2/N2)

Â Programming effort: E = V/L

Â Estimated programming time: T ô = E/18

Â Estimate of N: N ô = n1log2n2 : n2log2n2

For this example: N = 68, N ô = 89, L = .015, Lô = .028

15 N. Kokash, Software Engineering

Software Engineering

More complex metrics

Â Intra-modular:

ÃStructure-based (e.g., McCabeôs cyclomatic

complexity:

Â number of edges - number of nodes + number of

connected components + 1)

Â Inter-modular:

ÃBased on ñusesò relation (call graph)

ÃTree impurity (for a graph with n nodes and e

edges: m(G) = 2(e-n+1)/(n-1)(n-2)

ÃInformation flow metric (e.g., Shepperdôs variant)

16 N. Kokash, Software Engineering

Software Engineering

Object-oriented metrics

ÂWMC: Weighted Methods per Class

ÂDIT: Depth of Inheritance Tree

ÂNOC: Number Of Children

ÂCBO: Coupling Between Object Classes

ÂRFC: Response For a Class

ÂLCOM: Lack of COhesion of a Method

More in the lectures on software quality (lecture 5) and

cost estimation (lecture 11)

17 N. Kokash, Software Engineering

Software Engineering

Design methods

ÂFunctional decomposition

ÂData flow design (SA/SD)

ÂDesign based on data structures (JSD/JSP)

ÂObject-oriented design

18 N. Kokash, Software Engineering

Software Engineering

Functional decomposition
ÂExtremes: bottom-up and top-down

ÂNot used as such; design is not purely
rational:

Áclients do not know what they
want

Áchanges influence earlier
decisions

Ápeople make errors

Áprojects do not start from scratch

ÂRather, design has a yo-yo character

ÂWe can only fake a rational design process

19 N. Kokash, Software Engineering

Software Engineering

Data flow design

Â Yourdon and Constantine (early 70s)

Â Nowadays version: two-step
process:

ÃStructured Analysis (SA), resulting in a
logical design, drawn as a set of data
flow diagrams

ÃStructured Design (SD) transforming
the logical design into a program
structure drawn as a set of structure
charts

Â Do you remember Data Flow
Diagrams (DFDs)?

20 N. Kokash, Software Engineering

Software Engineering

Data flow design

ÂTop-level DFD: context view

ÂFirst-level decomposition

ÂSecond-level decomposition

Âé

management client library

system

direction

report

request

ackôment

21 N. Kokash, Software Engineering

Software Engineering

First-level decomposition

Borrow

title

Prelim

doc

Prelim

doc

Prelim

doc

client

catalog adm.

management

log file

request

log data

return

 request
borrow

request

title title

a
c
k
n
o
w

le
d
g
e
m

e
n
t

report direction

log data

22 N. Kokash, Software Engineering

Software Engineering

Second-level decomposition

Check

client

data

log file

log data

Process

request

data base

return

request

borrow

not OK

OK

request

request

client info

23 N. Kokash, Software Engineering

Software Engineering

Example minispec
Identification: Process request

Description:

1 Enter type of request

 1.1 If invalid, issue warning and repeat
step 1

 1.2 If step 1 repeated 5 times, terminate
transaction

2 Enter book identification

 2.1 If invalid, issue warning and repeat
step 2

 2.2 If step 2 repeated 5 times, terminate
transaction

3 Log client identification, request type
and book identification

4 ...

24 N. Kokash, Software Engineering

Software Engineering

Data dictionary entries
borrow - request = client - id + book - id

return - request = client - id + book - id

log - data = client - id + [borrow | return] +
book - id

book - id = author - name + title + (isbn) +
[proc | series | other]

Conventions:

 [] - include one of the enclosed options

 | - separates options

 + - AND

 () - enclosed items are optional

25 N. Kokash, Software Engineering

Software Engineering

From data flow diagrams to

structure charts

ÂResult of SA: logical model, consisting f a set of
DFDôs, augmented by minispecs and data
dictionary

ÂStructured Design = transition from DFDôs to
structure charts
ÃHeuristics for this transition are based on notions of

coupling and cohesion

ÃMajor heuristic concerns choice for top-level
structure chart, most often: transform-centered

26 N. Kokash, Software Engineering

Software Engineering

Transform-centered

design

A B D E F G

C H K

Do job

A

C

B G

F E D

K

H

27 N. Kokash, Software Engineering

Software Engineering

Design based on data structures

ÂJackson Structured
Programming (JSP)
Ãfor programming-in-the-small

ÂJackson Structured Design
(JSD)
Ãfor programming-in-the-large

ÂMichael Anthony Jackson
(born 1936) is a British
computer scientist

28 N. Kokash, Software Engineering

Software Engineering

JSP ÂBasic idea: good program reflects
structure of its input and output

ÂProgram can be derived almost
mechanically from a description of
the input and output

Â Input and output are depicted in a
structure diagram and/or in
structured text/schematic logic
(pseudocode)

A

B C D

sequence

B *

iteration

B o C o D o

A

selection

A

29 N. Kokash, Software Engineering

Software Engineering

JSP Example

30 N. Kokash, Software Engineering

Software Engineering

JSP Example

31 N. Kokash, Software Engineering

Software Engineering

The same without JSP

32 N. Kokash, Software Engineering

Software Engineering

Fundamental issues in JSP
ÂModel input and output using structure

diagrams

ÂMerge diagrams to create program
structure

ÂMeanwhile, resolve structure clashes
ÃClash = there is no obvious

correspondence between the input and
output structures

Â Optimize results through program
inversion
ÃDesign simple programs using JSP and

then invert one (or more) programs to
optimize the design.

33 N. Kokash, Software Engineering

Software Engineering

Program inversion

34 N. Kokash, Software Engineering

Software Engineering

Differences between JSP and

other methods

ÂFunctional decomposition, data

flow design:

ÃProblem structure Ý functional

structure Ý program structure

ÂJSP:

ÃProblem structure Ý data

structure Ý program structure

35 N. Kokash, Software Engineering

Software Engineering

Jackson Structured Design (JSD)
ÂProblem with JSP: how to obtain a

mapping from the problem structure to
the data structure?

ÂJSD tries to fill this gap

ÂJSD has three stages:

Ãmodeling stage: description of real world
problem in terms of entities and actions

Ãnetwork stage: model system as a network of
communicating processes

Ãimplementation stage: transform network into
a sequential design

36 N. Kokash, Software Engineering

Software Engineering

JSD modeling stage
ÂJSD models the UoD as a set of

entities

ÂFor each entity, a process is
created which models the life cycle
of that entity

ÂThis life cycle is depicted as a
process structure diagram (PSD)

ÂPSDôs are finite state diagrams:
Ãthe roles of nodes and edges has

been reversed

Ãthe nodes denote transitions while the
edges denote states

37 N. Kokash, Software Engineering

Software Engineering

Object-oriented design principles
ÂThree major steps:

ÃIdentify the objects

ÃDetermine their attributes and services

ÃDetermine the relationships between objects

ÂOO as middle-out design

ÃFirst set of objects becomes middle level

ÃTo implement these, lower-level objects are
required

ÃA control/workflow set of objects constitutes the
top level

38 N. Kokash, Software Engineering

Software Engineering

Carefully consider candidate list
Â Eliminate implementation constructs,
such as ñsoftwareò

Â Replace or eliminate vague terms:
Ãñsystemò Ý ñcomputerò

Â Equate synonymous terms:
Ãñcustomerò and ñclientò Ý ñclientò

Â Eliminate operation names, if possible
(such as ñtransactionò)

Â Be careful in what you really mean
Ã Can a client be a library employee? Is it
ñbook copyò rather than ñbookò?

Â Eliminate individual objects (as
opposed to classes)
Ãñbookôs codeò Ý attribute of ñbook copyò

39 N. Kokash, Software Engineering

Software Engineering

Identify relationships
Â From the problem statement:
Ãemployee operates station

Ãstation has bar code reader

Ãbar code reader reads book copy

Ãbar code reader reads identification
card

Â Tacit knowledge:
Ã library owns computer

Ã library owns stations

Ãcomputer communicates with station

Ã library employs employee

Ãclient is member of library

Ãclient has identification card

40 N. Kokash, Software Engineering

Software Engineering

Result: Initial class diagram

41 N. Kokash, Software Engineering

Software Engineering

Object-oriented design methods

ÂBooch: early, new and rich

set of notations

ÂFusion: more emphasis on

process

ÂRUP: full life cycle model

associated with UML

42 N. Kokash, Software Engineering

Software Engineering

Boochô method

Identify classes and objects

Identify semantics of classes and objects

Identify relationships between classes and objects

Identify interface and implementation

of classes and objects

43 N. Kokash, Software Engineering

Software Engineering

Fusion

object model

interface model

visibility graphs
object interaction

graphs

Design

Analysis

class descriptions inheritance graphs

44 N. Kokash, Software Engineering

Software Engineering

RUP

ÂFour phases: inception, elaboration,

construction, transition

ÂAnalysis and design workflow:

ÃFirst iteration: architecture

ÃNext, analyze behavior:

Â from use cases to set of design elements

Âproduces black-box model of the solution

ÃFinally, design components:

Â refine elements into classes, interfaces, etc.

45 N. Kokash, Software Engineering

Software Engineering

Classification of

design methods

ÂOrientation dimension:

ÃProblem-oriented: understand problem and its
solution

ÃProduct-oriented: correct transformation from
specification to implementation

ÂProduct/model dimension:

ÃConceptual: descriptive models

ÃFormal: prescriptive models

46 N. Kokash, Software Engineering

Software Engineering

Classification of

design methods

II

Structured design

III

JSD

VDM

IV

Functional decomposition

JSP

I

ER modeling

Structured analysis

Understand the problem Transform to implementation

Represent properties Create implementation units

47 N. Kokash, Software Engineering

Software Engineering

Caveats when choosing a

particular design method

ÂFamiliarity with the problem

domain

ÂDesignerôs experience

ÂAvailable tools

ÂDevelopment philosophy

48 N. Kokash, Software Engineering

Software Engineering

Design pattern
Â Provides solution to a recurring

problem

Â Balances set of opposing forces

Â Documents well-prove design
experience

Â Abstraction above the level of a single
component

Â Provides common vocabulary and
understanding

Â Are a means of documentation

Â Supports construction of software
with defined properties

49 N. Kokash, Software Engineering

Software Engineering

Example design pattern: Proxy

ÂContext:

ÃClient needs services from other
component, direct access may
not be the best approach

ÂProblem:

ÃWe do not want hard-code
access

ÂSolution:

ÃCommunication via a
representative, the Proxy

50 N. Kokash, Software Engineering

Software Engineering

Example design pattern:

Command Processor

Â Context:

ÃUser interface that must be flexible or provides
functionality beyond handling of user functions

Â Problem:

ÃWell-structured solution for mapping interface to internal
functionality. All óextrasô are separate from the interface

Â Solution:

ÃA separate component, the Command Processor, takes
care of all commands

ÃActual execution of the command is delegated

51 N. Kokash, Software Engineering

Software Engineering

Anti-patterns

ÂPatterns describe desirable

behavior

ÂAnti-patterns describe situations

one had better avoid

Â In agile approaches (XP),

refactoring is applied whenever

an anti-pattern has been

introduced

52 N. Kokash, Software Engineering

Software Engineering

Example antipatterns
ÂGod class: class that holds most

responsibilities

ÂLava flow: dead code

ÂPoltergeist: class with few
responsibilities and a short life

ÂGolden Hammer: solution that
does not fit the problem

ÂStovepipe: (almost) identical
solutions at different places

ÂSwiss Army Knife: excessively
complex class interface

53 N. Kokash, Software Engineering

Software Engineering

SUMMARY

ÂEssence of the design process: decompose
system into parts

ÂDesirable properties of a decomposition:

Ãcoupling/cohesion, information hiding, (layers of)
abstraction

ÂThere have been many attempts to express
these properties in numbers

ÂDesign methods:

Ãfunctional decomposition, data flow design, data
structure design, object-oriented design

54 N. Kokash, Software Engineering

Software Engineering

ÂRead chapter 12

ÂDesign the Image2UML system

ÃUse a UML design tool and deliver your design
sufficiently documented in a PDF file. The
document to be delivered should at least consist of
a class diagram, a sequence diagram, an
activity diagram and a state chart diagram.

Homework

55 N. Kokash, Software Engineering

