
Software Engineering

Natallia Kokash

email: nkokash@liacs.nl

1

Software Engineering

 Definition

 Software maintenance issues

 Maintenance and evolution

 Reverse engineering (refactoring, bad

smells)

 Program comprehension

 Maintenance tools

 Organization and control of maintenance

Software maintenance

2

Software Engineering

Need for software maintenance
 100 billion lines of code

 80% of it is unstructured, patched and badly
documented

 A multinational bank:

 100+ offices

 10+ mainframes at a central site

 1000+ workstations

 24 * 7 availability

 100+ application systems

 500K+ LOC

 Obsolete languages (Fortran, COBOL)

 Huge databases

3

Software Engineering

The process of modifying a

software system or

component after delivery to:

 Correct faults,

 Improve performance or

other attributes, or

 Adapt to a changed

environment

Definition

4

Software Engineering

Distribution of maintenance

activities

 Corrective maintenance: correcting discovered errors

 Preventive maintenance: correcting latent errors

 Adaptive maintenance: adapting to changes in the
environment

 Perfective maintenance: adapting to changing user
requirements

corrective 21%

adaptive 25%

preventive 4%

perfective 50%

5

Software Engineering

Growth of maintenance problem

 1975: ~75,000 people in
maintenance (17%)

 1990: 800,000 (47%)

 2005: 2,500,000 (76%)

 2015: ??

(Numbers from Jones (2006))

6

Software Engineering

Maintenance or Evolution
 Some observations:

Systems are not built from scratch

There is time pressure on
maintenance

Software is embedded in the real
world and become part of it, thereby
changing it.

This leads to a feedback system
where the program and its
environment evolve in concert.

7

Software Engineering

Laws of software evolution
(Lehman 1974)

 Continuing Change

Programs must be continually adapted or they become
progressively less satisfactory.

 Increasing Complexity

As a program evolves its complexity increases unless
work is done to maintain or reduce it.

 Self Regulation

Evolution process is self regulating with distribution of
product and process measures close to normal.

8

Software Engineering

Illustration of the third law

Time

System attributes

Self Regulation

Evolution process is
self regulating with
distribution of
product and
process measures
close to normal.

9

Software Engineering

 Conservation of Organizational Stability
(invariant work rate)
The average effective global activity rate in an

evolving system is invariant over product lifetime

 Conservation of Familiarity (incremental
growth)
As a system evolves all associated with it (e.g.,

developers) must maintain mastery of its content
and behavior to achieve satisfactory evolution.
Excessive growth diminishes that mastery.

Laws of software evolution
(Lehman 1974)

10

Software Engineering

 Continuing Growth
 The functional content of systems must be continually

increased to maintain user satisfaction over their
lifetime.

 Declining Quality
 The quality of systems will appear to be declining unless

they are rigorously maintained and adapted to
operational environment changes.

 Feedback System
 Evolution processes constitute multi-level, multi-loop,

multi-agent feedback systems and must be treated as
such.

Laws of software evolution
(… and later)

11

Software Engineering

Fighter plane control system
IF not-read1 (V1) GOTO
DEF1;

display (V1);

GOTO C;

DEF1: IF not-read2 (V2)
GOTO DEF2;

display (V2);

GOTO C;

DEF2: display(3000)

C:

12

Software Engineering

Major causes of maintenance

problems

 Unstructured code

 Insufficient domain knowledge

 Insufficient documentation

13

Software Engineering

Key to maintenance is in

development

 Higher quality less
(corrective) maintenance

 Anticipating changes less
(adaptive and perfective)
maintenance

 Better tuning to user needs
less (perfective) maintenance

 Less code less maintenance

14

Software Engineering

Shift in type of maintenance over

time
 Introductory stage: emphasis on

user support

 Growth stage: emphasis on
correcting faults

 Maturity: emphasis on
enhancements

 Decline: emphasis on
technology changes

15

Software Engineering

Reverse engineering
 Does not involve any

adaptation of the
system

 Akin to reconstruction
of a blueprint

 Design recovery: result
is at higher level of
abstraction

 Redocumentation:
result is at same level
of abstraction

16

Software Engineering

Restructuring
 Functionality does not change

 From one representation to
another, at the same level of
abstraction, such as:

From spaghetti code to
structured code

Refactoring after a design step
in agile approaches

Black box restructuring: add a
wrapper

With platform change: migration

17

Software Engineering

Reengineering (renovation)

 Functionality does change

 Then reverse engineering

step is followed by a

forward engineering step

in which the changes are

made

18

Software Engineering

Refactoring in case of

bad smells (1)
 Long method
 Large class
 Primitive obsession
 Long parameter list
 Data clumps
 Switch statements
 Temporary field
 Refused bequest
 Alternative classes with different

interfaces
 Parallel inheritance hierarchies

19

Software Engineering

Refactoring in case of

bad smells (2)
 Lazy class
 Data class
 Duplicate code
 Speculative generality
 Message chains
 Middle man
 Feature envy
 Inappropriate intimacy
 Divergent change
 Shotgun surgery
 Incomplete library class

20

Software Engineering

Categories of bad smells
 Bloaters: something has

grown too large

 Object-oriented abusers: OO
not fully exploited

 Change preventers: hinder
further evolution

 Dispensables: can be
removed

 Encapsulators: deal with data
communication

 Couplers: coupling too high

21

Software Engineering

Categories of bad smells

Category Bad smell

Bloaters
Long method, Large class, Primitive obsession, Long parameter

list, Data clumps

OO abusers
Switch statements, Temporary field, Refused bequest, Alternative

classes with different interfaces, Parallel inheritance hierarchies

Change

preventers
Divergent change, Shortgun surgery

Dispensables Lazy class, Data class, Duplicate code, Speculative generality

Encapsulators Message chains, Middle man

Couplers Feature envy, Inappropriate intimacy

Others Incomplete library class, comments

22

Software Engineering

What does this code do?

for (i=1; i<n; i++){

 for (j=1; j<n; j++){

 if (A[i,j]){

 for (k=1; k<n; k++) {

 if (A[i,k]) A[j,k]=true;

 }

 }

 }

}

 Warshall’s algorithm to compute a transitive

closure of a relation (graph)

 What is “transitive closure”? “Relation”?

23

Software Engineering

Program comprehension

 50% of time

 Programming plans
 fragments that correspond to

stereotypical actions

 Beacons
 key features that represents the

presence of a particular structure or
operation

 e.g., swap operation indicates sort

 As-needed strategy vs. systematic
strategy

 Use of outside knowledge (domain
knowledge, naming conventions, etc.)

24

Software Engineering

Software maintenance tools
 Tools to ease perceptual

processes (reformatters)

 Tools to gain insight in static
structure

 Tools to gain insight in
dynamic behavior

 Tools that inspect version
history

See lecture 2 (Configuration
management)

25

Software Engineering

Bug/defect tracking systems

 Bugzilla by Mozilla foundation

 Test Director by Mercury Interactive

 Silk Radar by Segue Software

 SQA Manager by Rational software

 QA director by Compuware

 HP Quality Center

 IBM Rational Quality Manager
 Information presented through custom-

designed dashboards

 Micro Focus SilkPerformer
Performs load tests

26

Software Engineering

Clone finding tools
 Black Duck Suite - software analyzing suite

 CCFinder (C/C++, Java, COBOL, Fortran, etc.)

 Checkstyle (Java)

 CloneAnalyzer (C/C++ and Java / Eclipse plug-in)

 Clone Digger (Python and Java)

 CloneDR - (Ada, C, C++, C#, Java, COBOL, Fortran, Python,
VB.net, VB6, PHP4/5, PLSQL, SQL2011, XML, many others)

 Copy/Paste Detector (CPD) from PMD (Java, JSP, C, C++,
Fortran, PHP)

 ConQAT (ABAP, ADA, Cobol, C/C++, C#, Java, PL/I,
PL/SQL, Python, Text, Transact SQL, Visual Basic, XML)

 JPlag (Java, C#, C, C++, Scheme, natural language text)

 Pattern Miner (CP Miner)

 Simian (Similarity Analyzer) software

 Google CodePro Analytix - (Java / Eclipse plug-in)

27

Software Engineering

Maintenance management tools
 ProTeus III Expert CMMS
mid-size maintenance

management program for one to
four users

 schedule preventative maintenance

generate automatic work orders

document equipment maintenance
history

 track assets and inventory

 track personnel

 create purchase orders

generate reports

28

Software Engineering

 Resharper

Code inspection, refactoring,

navigation, analysis

 NDepend

Tool to manage .NET code

Software quality can be

measured using code metrics,

visualized using graphs and

treemaps, and enforced using

standard and custom rules

 Also JDepend for Java

See lecture 5 (Software quality)

29

Software Engineering

Analyzing software evolution data

 Version-centered analysis:
study differences between
successive versions

 History-centered analysis:
study evolution from a
certain viewpoint (e.g. how
often components are
changed together)

30

Software Engineering

Organization of maintenance

 W-type: by work type
(analysis vs. programming)

 A-type: by application
domain

 L-type: by life-cycle type
(development vs.
maintenance)

 L-type found most often

31

Software Engineering

 Clear accountability

 Development progress not hindered by unexpected
maintenance requests

 Better acceptance test by maintenance department

 Higher QoS by maintenance department

 Higher productivity

Advantages of L-type

departmentalization

32

Software Engineering

Disadvantages of L-type

departmentalization

 Demotivation of maintenance personnel
because of status differences

 Loss of system knowledge during system
transfer

 Coordination costs

 Increased acceptance costs

 Duplication of communication channels
with users

33

Software Engineering

Product-service continuum and

maintenance

34

Software Engineering

Service gaps
1. Expected service as perceived by

provider differs from service
expected by customer

2. Service specification differs from
expected service as perceived by
provider

3. Service delivery differs from
specified services

4. Communication does not match
service delivery

35

Software Engineering

Gap model of service quality

36

Software Engineering

Maintenance control

 Configuration control:

 Identify, classify change requests

Analyze change requests

 Implement changes

 Fits in with iterative enhancement model of
maintenance (first analyze, then change)

 As opposed to quick-fix model (first patch, then
update design and documentation, if time
permits)

37

Software Engineering

Indicators of system decay

 Frequent failures

 Overly complex structure

 Running in emulation mode

 Very large components

 Excessive resource
requirements

 Deficient documentation

 High personnel turnover

 Different technologies in one
system

38

Software Engineering

SUMMARY

 Most of maintenance is (inevitable)
evolution

 Maintenance problems:
Unstructured code
 Insufficient knowledge about system and

domain
 Insufficient documentation
Bad image of maintenance department

 Lehman’s 3rd law: a system that is
used, will change

39

Software Engineering

 Read chapter 14

 11. Software Architecture

 12. Software Design

 13. Software Testing

 14. Software Maintenance

 17. Software Reusability

 18. Component-Based Software Engineering

 19. Service Orientation

 20. Global Software Development

40

