
Software Engineering

Natallia Kokash

email: nkokash@liacs.nl

1

Software Engineering

 Definition

 Software maintenance issues

 Maintenance and evolution

 Reverse engineering (refactoring, bad

smells)

 Program comprehension

 Maintenance tools

 Organization and control of maintenance

Software maintenance

2

Software Engineering

Need for software maintenance
 100 billion lines of code

 80% of it is unstructured, patched and badly
documented

 A multinational bank:

 100+ offices

 10+ mainframes at a central site

 1000+ workstations

 24 * 7 availability

 100+ application systems

 500K+ LOC

 Obsolete languages (Fortran, COBOL)

 Huge databases

3

Software Engineering

The process of modifying a

software system or

component after delivery to:

 Correct faults,

 Improve performance or

other attributes, or

 Adapt to a changed

environment

Definition

4

Software Engineering

Distribution of maintenance

activities

 Corrective maintenance: correcting discovered errors

 Preventive maintenance: correcting latent errors

 Adaptive maintenance: adapting to changes in the
environment

 Perfective maintenance: adapting to changing user
requirements

corrective 21%

adaptive 25%

preventive 4%

perfective 50%

5

Software Engineering

Growth of maintenance problem

 1975: ~75,000 people in
maintenance (17%)

 1990: 800,000 (47%)

 2005: 2,500,000 (76%)

 2015: ??

(Numbers from Jones (2006))

6

Software Engineering

Maintenance or Evolution
 Some observations:

Systems are not built from scratch

There is time pressure on
maintenance

Software is embedded in the real
world and become part of it, thereby
changing it.

This leads to a feedback system
where the program and its
environment evolve in concert.

7

Software Engineering

Laws of software evolution
(Lehman 1974)

 Continuing Change

Programs must be continually adapted or they become
progressively less satisfactory.

 Increasing Complexity

As a program evolves its complexity increases unless
work is done to maintain or reduce it.

 Self Regulation

Evolution process is self regulating with distribution of
product and process measures close to normal.

8

Software Engineering

Illustration of the third law

Time

System attributes

Self Regulation

Evolution process is
self regulating with
distribution of
product and
process measures
close to normal.

9

Software Engineering

 Conservation of Organizational Stability
(invariant work rate)
The average effective global activity rate in an

evolving system is invariant over product lifetime

 Conservation of Familiarity (incremental
growth)
As a system evolves all associated with it (e.g.,

developers) must maintain mastery of its content
and behavior to achieve satisfactory evolution.
Excessive growth diminishes that mastery.

Laws of software evolution
(Lehman 1974)

10

Software Engineering

 Continuing Growth
 The functional content of systems must be continually

increased to maintain user satisfaction over their
lifetime.

 Declining Quality
 The quality of systems will appear to be declining unless

they are rigorously maintained and adapted to
operational environment changes.

 Feedback System
 Evolution processes constitute multi-level, multi-loop,

multi-agent feedback systems and must be treated as
such.

Laws of software evolution
(… and later)

11

Software Engineering

Fighter plane control system
IF not-read1 (V1) GOTO
DEF1;

display (V1);

GOTO C;

DEF1: IF not-read2 (V2)
GOTO DEF2;

display (V2);

GOTO C;

DEF2: display(3000)

C:

12

Software Engineering

Major causes of maintenance

problems

 Unstructured code

 Insufficient domain knowledge

 Insufficient documentation

13

Software Engineering

Key to maintenance is in

development

 Higher quality  less
(corrective) maintenance

 Anticipating changes  less
(adaptive and perfective)
maintenance

 Better tuning to user needs 
less (perfective) maintenance

 Less code  less maintenance

14

Software Engineering

Shift in type of maintenance over

time
 Introductory stage: emphasis on

user support

 Growth stage: emphasis on
correcting faults

 Maturity: emphasis on
enhancements

 Decline: emphasis on
technology changes

15

Software Engineering

Reverse engineering
 Does not involve any

adaptation of the
system

 Akin to reconstruction
of a blueprint

 Design recovery: result
is at higher level of
abstraction

 Redocumentation:
result is at same level
of abstraction

16

Software Engineering

Restructuring
 Functionality does not change

 From one representation to
another, at the same level of
abstraction, such as:

From spaghetti code to
structured code

Refactoring after a design step
in agile approaches

Black box restructuring: add a
wrapper

With platform change: migration

17

Software Engineering

Reengineering (renovation)

 Functionality does change

 Then reverse engineering

step is followed by a

forward engineering step

in which the changes are

made

18

Software Engineering

Refactoring in case of

bad smells (1)
 Long method
 Large class
 Primitive obsession
 Long parameter list
 Data clumps
 Switch statements
 Temporary field
 Refused bequest
 Alternative classes with different

interfaces
 Parallel inheritance hierarchies

19

Software Engineering

Refactoring in case of

bad smells (2)
 Lazy class
 Data class
 Duplicate code
 Speculative generality
 Message chains
 Middle man
 Feature envy
 Inappropriate intimacy
 Divergent change
 Shotgun surgery
 Incomplete library class

20

Software Engineering

Categories of bad smells
 Bloaters: something has

grown too large

 Object-oriented abusers: OO
not fully exploited

 Change preventers: hinder
further evolution

 Dispensables: can be
removed

 Encapsulators: deal with data
communication

 Couplers: coupling too high

21

Software Engineering

Categories of bad smells

Category Bad smell

Bloaters
Long method, Large class, Primitive obsession, Long parameter

list, Data clumps

OO abusers
Switch statements, Temporary field, Refused bequest, Alternative

classes with different interfaces, Parallel inheritance hierarchies

Change

preventers
Divergent change, Shortgun surgery

Dispensables Lazy class, Data class, Duplicate code, Speculative generality

Encapsulators Message chains, Middle man

Couplers Feature envy, Inappropriate intimacy

Others Incomplete library class, comments

22

Software Engineering

What does this code do?

for (i=1; i<n; i++){

 for (j=1; j<n; j++){

 if (A[i,j]){

 for (k=1; k<n; k++) {

 if (A[i,k]) A[j,k]=true;

 }

 }

 }

}

 Warshall’s algorithm to compute a transitive

closure of a relation (graph)

 What is “transitive closure”? “Relation”?

23

Software Engineering

Program comprehension

 50% of time

 Programming plans
 fragments that correspond to

stereotypical actions

 Beacons
 key features that represents the

presence of a particular structure or
operation

 e.g., swap operation indicates sort

 As-needed strategy vs. systematic
strategy

 Use of outside knowledge (domain
knowledge, naming conventions, etc.)

24

Software Engineering

Software maintenance tools
 Tools to ease perceptual

processes (reformatters)

 Tools to gain insight in static
structure

 Tools to gain insight in
dynamic behavior

 Tools that inspect version
history

See lecture 2 (Configuration
management)

25

Software Engineering

Bug/defect tracking systems

 Bugzilla by Mozilla foundation

 Test Director by Mercury Interactive

 Silk Radar by Segue Software

 SQA Manager by Rational software

 QA director by Compuware

 HP Quality Center

 IBM Rational Quality Manager
 Information presented through custom-

designed dashboards

 Micro Focus SilkPerformer
Performs load tests

26

Software Engineering

Clone finding tools
 Black Duck Suite - software analyzing suite

 CCFinder (C/C++, Java, COBOL, Fortran, etc.)

 Checkstyle (Java)

 CloneAnalyzer (C/C++ and Java / Eclipse plug-in)

 Clone Digger (Python and Java)

 CloneDR - (Ada, C, C++, C#, Java, COBOL, Fortran, Python,
VB.net, VB6, PHP4/5, PLSQL, SQL2011, XML, many others)

 Copy/Paste Detector (CPD) from PMD (Java, JSP, C, C++,
Fortran, PHP)

 ConQAT (ABAP, ADA, Cobol, C/C++, C#, Java, PL/I,
PL/SQL, Python, Text, Transact SQL, Visual Basic, XML)

 JPlag (Java, C#, C, C++, Scheme, natural language text)

 Pattern Miner (CP Miner)

 Simian (Similarity Analyzer) software

 Google CodePro Analytix - (Java / Eclipse plug-in)

27

Software Engineering

Maintenance management tools
 ProTeus III Expert CMMS
mid-size maintenance

management program for one to
four users

 schedule preventative maintenance

generate automatic work orders

document equipment maintenance
history

 track assets and inventory

 track personnel

 create purchase orders

generate reports

28

Software Engineering

 Resharper

Code inspection, refactoring,

navigation, analysis

 NDepend

Tool to manage .NET code

Software quality can be

measured using code metrics,

visualized using graphs and

treemaps, and enforced using

standard and custom rules

 Also JDepend for Java

See lecture 5 (Software quality)

29

Software Engineering

Analyzing software evolution data

 Version-centered analysis:
study differences between
successive versions

 History-centered analysis:
study evolution from a
certain viewpoint (e.g. how
often components are
changed together)

30

Software Engineering

Organization of maintenance

 W-type: by work type
(analysis vs. programming)

 A-type: by application
domain

 L-type: by life-cycle type
(development vs.
maintenance)

 L-type found most often

31

Software Engineering

 Clear accountability

 Development progress not hindered by unexpected
maintenance requests

 Better acceptance test by maintenance department

 Higher QoS by maintenance department

 Higher productivity

Advantages of L-type

departmentalization

32

Software Engineering

Disadvantages of L-type

departmentalization

 Demotivation of maintenance personnel
because of status differences

 Loss of system knowledge during system
transfer

 Coordination costs

 Increased acceptance costs

 Duplication of communication channels
with users

33

Software Engineering

Product-service continuum and

maintenance

34

Software Engineering

Service gaps
1. Expected service as perceived by

provider differs from service
expected by customer

2. Service specification differs from
expected service as perceived by
provider

3. Service delivery differs from
specified services

4. Communication does not match
service delivery

35

Software Engineering

Gap model of service quality

36

Software Engineering

Maintenance control

 Configuration control:

 Identify, classify change requests

Analyze change requests

 Implement changes

 Fits in with iterative enhancement model of
maintenance (first analyze, then change)

 As opposed to quick-fix model (first patch, then
update design and documentation, if time
permits)

37

Software Engineering

Indicators of system decay

 Frequent failures

 Overly complex structure

 Running in emulation mode

 Very large components

 Excessive resource
requirements

 Deficient documentation

 High personnel turnover

 Different technologies in one
system

38

Software Engineering

SUMMARY

 Most of maintenance is (inevitable)
evolution

 Maintenance problems:
Unstructured code
 Insufficient knowledge about system and

domain
 Insufficient documentation
Bad image of maintenance department

 Lehman’s 3rd law: a system that is
used, will change

39

Software Engineering

 Read chapter 14

 11. Software Architecture

 12. Software Design

 13. Software Testing

 14. Software Maintenance

 17. Software Reusability

 18. Component-Based Software Engineering

 19. Service Orientation

 20. Global Software Development

40

